Object-Oriented
Analysis and Design



Object-Oriented Analysis & Design

Object-Oriented
Analysis and Design

Analysis is the process of extracting the "needs" of a system
- what the system must do to satisfy the customer, not
how the system will be implemented.

Design is the process of moving the analysis results to a
detailed software architecture.

Programming means taking the design and producing an
Implementation in a particular language.



Object-Oriented Analysis & Design

Analysis and design of object-oriented systems tend
to merge together. For both we need to answer:

How do you recognize objects initially?
What are their characteristics?
What are the relationships among the objects?

How do they interact?



Object-Oriented Analysis & Design

The Process to Follow:

1. ldentify the Objects (Principal Objects)

2. Define Attributes (Supporting Objects)

3. ldentify Structure (Classification & Assembly)
4. Define Services (Messages)

5. Model the Processes (Simulate)



Identify the Objects

1. Identify the Objects

Where to look:

Look at the problem space, text, pictures. Study
requirements documents.

Interview users of the prospective application and
observe them in action to see what they do, who and
what they interact with, in what order, and what the
outcomes of different actions are.

Get written specific cases or scripts of typical
interactions.



Identify the Objects

What to look for:

|dentify the behaviors of the system and the actions that
must be taken.

Then simply look for who or what is has responsibility
for the actions.

Look for the nouns in the scripts.



Identify the Objects

Example types of objects:
screen interface objects (button, window, etc.)
systems (vehicle, motor, storm)
devices (sensor, switch)
events remembered (registration, oil spill, signal)
roles played (clerk, owner)
locations (site, office)

organizational units (county, department)



Identify the Objects
What to avoid:
Classes with too much responsibility. These should

delegate some of the responsibility to subordinate
objects.

Classes with no responsibility, no behavior. If it
serves no function, it can be eliminated altogether.



Identify Structure

2. Define Attributes

Identify the attributes.

Attach each attribute to the object it really describes. For
example, "color" is really an attribute of a "vehicle" object,
not of the "vehicle registration" object.



Identify Structure

Identify Supporting objects.

Identify attributes that actually represent supporting
objects in what will become an assembly structure.
Example: A "sailboat" object has a "sail" attribute which
IS another object in a part-of assembly structure.

|dentification of the supporting objects leads to the
assembly, or part-of, hierarchy (see below).



Identify Structure

Identify Supporting objects (continued).

Repeated values for some attributes: Example: If a
"father" object has attributes "child’'s name" and "child’s
age", but "father" could have many children, it is probably
better to make "child" a separate object with attributes
"name" and "age", and put a "list of children" attribute on
"father".

Single attributes: Example: If "location" is an object with
a single attribute "address" and is related to a "store"
object, make "address" an attribute of "store" and
eliminate "location" as a separate object.

9-10



Define Services

3. ldentify Structure

Look for two types of structure:
- Classification Structure

- Assembly Structure

9-11



Define Services

Classification Structure

Also called: abstraction hierarchy, is-a, kind-of

Consider each object as a generalization ("vehicle"), and
then as a specialization ("car"). Put the common
attributes higher in the structure.

Group objects according to similarity of behavior. Consider
forming abstract classes which never have instances,
but simply group common behavior at a high level and
are meant to be subclassed.

Experienced object-oriented programmers advise:
"subclass early and often”.

9-12



Define Services

Assembly Structure

Also called: part-of, has-a, composition, containership,
mechanism

Supporting objects already identified as attributes
constitute an assembly structure. Consider whether an
object can be further decomposed into several smaller
functional units, each as a separate object.

Build mechanisms consisting of objects which own other

supporting objects. For example, a "car" object actually
owns an "engine", some "wheels", etc.

9-13



Define Attributes

4. Define Services.

Identify the services.
Consider three types of service:
Occur (instance add, delete, and select).

Calculate. These are the most obvious and represent
the major behaviors and functions of the object.

Monitor/change state. These include simple
reading/writing of instance variables.

9-14



Define Attributes

Identify the services. (continued)

Look for the verbs and actions in the scripts obtained in
step 1. Review the behaviors and responsibilities
determined earlier.

Look for dependency relationships between objects, such
that a behavior of one object automatically triggers a
behavior in another.

Look for communication between objects, such as
sending or requesting information.

Ask the key question: "What should an object in this
class know how to do?"

9-15



Model the Processes

5. Model the Processes.

Finally, you need to determine which objects initiate
activities, and identify the sequence of activities.

Use the scripts from step 1 and "run” the model of the
application. That is, given the behaviors, objects, and
relationships defined thus far, can the scripts be
enacted?

Specify the life cycles of objects, and their status at

different parts of the cycle. When are instances created
and when are they no longer needed?

Iterate through steps 1-5 until you get it right!

9-16



Object-Oriented Analysis & Design

References

. Object-Oriented Analysis, by Peter Coad and Edward Yourdon, Prentice-Hall,
1990.

. Object-Oriented Design, by Peter Coad and Edward Yourdon, Prentice-Hall,
1991.

. Object-Oriented Design: with Applications, by Grady Booch, Benjamin-
Cummins, 1991.

. "Objects - Born and Bred", by Elizabeth Gibson, Byte, October 1990, pp. 245-
254.

. Objective-C : Object-Oriented Programming Techniques, by Lewis J. Pinson &
Richard S. Wiener, Addison-Wesley, 1991. Chapter 2 is particularly good on
object-oriented design.

. An Introduction to Object-Oriented Programming, by Timothy Budd, Addison-
Wesley, 1991. See Chapter 2 on responsibility-driven design.

9-17



